3.6.1 \(\int \frac {(c+a^2 c x^2)^{5/2}}{\sinh ^{-1}(a x)^{3/2}} \, dx\) [501]

Optimal. Leaf size=391 \[ -\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}-\frac {3 c^2 \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {Erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}-\frac {15 c^2 \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {Erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}-\frac {c^2 \sqrt {\frac {3 \pi }{2}} \sqrt {c+a^2 c x^2} \text {Erf}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {3 c^2 \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {Erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}+\frac {15 c^2 \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {Erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {c^2 \sqrt {\frac {3 \pi }{2}} \sqrt {c+a^2 c x^2} \text {Erfi}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}} \]

[Out]

-15/32*c^2*erf(2^(1/2)*arcsinh(a*x)^(1/2))*2^(1/2)*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)+15/32*c^2*
erfi(2^(1/2)*arcsinh(a*x)^(1/2))*2^(1/2)*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)-3/8*c^2*erf(2*arcsin
h(a*x)^(1/2))*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)+3/8*c^2*erfi(2*arcsinh(a*x)^(1/2))*Pi^(1/2)*(a^
2*c*x^2+c)^(1/2)/a/(a^2*x^2+1)^(1/2)-1/32*c^2*erf(6^(1/2)*arcsinh(a*x)^(1/2))*6^(1/2)*Pi^(1/2)*(a^2*c*x^2+c)^(
1/2)/a/(a^2*x^2+1)^(1/2)+1/32*c^2*erfi(6^(1/2)*arcsinh(a*x)^(1/2))*6^(1/2)*Pi^(1/2)*(a^2*c*x^2+c)^(1/2)/a/(a^2
*x^2+1)^(1/2)-2*(a^2*c*x^2+c)^(5/2)*(a^2*x^2+1)^(1/2)/a/arcsinh(a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 391, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {5790, 5819, 5556, 3389, 2211, 2235, 2236} \begin {gather*} -\frac {3 \sqrt {\pi } c^2 \sqrt {a^2 c x^2+c} \text {Erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {a^2 x^2+1}}-\frac {15 \sqrt {\frac {\pi }{2}} c^2 \sqrt {a^2 c x^2+c} \text {Erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}-\frac {\sqrt {\frac {3 \pi }{2}} c^2 \sqrt {a^2 c x^2+c} \text {Erf}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}+\frac {3 \sqrt {\pi } c^2 \sqrt {a^2 c x^2+c} \text {Erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {a^2 x^2+1}}+\frac {15 \sqrt {\frac {\pi }{2}} c^2 \sqrt {a^2 c x^2+c} \text {Erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}+\frac {\sqrt {\frac {3 \pi }{2}} c^2 \sqrt {a^2 c x^2+c} \text {Erfi}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {a^2 x^2+1}}-\frac {2 \sqrt {a^2 x^2+1} \left (a^2 c x^2+c\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + a^2*c*x^2)^(5/2)/ArcSinh[a*x]^(3/2),x]

[Out]

(-2*Sqrt[1 + a^2*x^2]*(c + a^2*c*x^2)^(5/2))/(a*Sqrt[ArcSinh[a*x]]) - (3*c^2*Sqrt[Pi]*Sqrt[c + a^2*c*x^2]*Erf[
2*Sqrt[ArcSinh[a*x]]])/(8*a*Sqrt[1 + a^2*x^2]) - (15*c^2*Sqrt[Pi/2]*Sqrt[c + a^2*c*x^2]*Erf[Sqrt[2]*Sqrt[ArcSi
nh[a*x]]])/(16*a*Sqrt[1 + a^2*x^2]) - (c^2*Sqrt[(3*Pi)/2]*Sqrt[c + a^2*c*x^2]*Erf[Sqrt[6]*Sqrt[ArcSinh[a*x]]])
/(16*a*Sqrt[1 + a^2*x^2]) + (3*c^2*Sqrt[Pi]*Sqrt[c + a^2*c*x^2]*Erfi[2*Sqrt[ArcSinh[a*x]]])/(8*a*Sqrt[1 + a^2*
x^2]) + (15*c^2*Sqrt[Pi/2]*Sqrt[c + a^2*c*x^2]*Erfi[Sqrt[2]*Sqrt[ArcSinh[a*x]]])/(16*a*Sqrt[1 + a^2*x^2]) + (c
^2*Sqrt[(3*Pi)/2]*Sqrt[c + a^2*c*x^2]*Erfi[Sqrt[6]*Sqrt[ArcSinh[a*x]]])/(16*a*Sqrt[1 + a^2*x^2])

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5790

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c^2*
x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[c*((2*p + 1)/(b*(n + 1)))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p], Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b
, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps

\begin {align*} \int \frac {\left (c+a^2 c x^2\right )^{5/2}}{\sinh ^{-1}(a x)^{3/2}} \, dx &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}+\frac {\left (12 a c^2 \sqrt {c+a^2 c x^2}\right ) \int \frac {x \left (1+a^2 x^2\right )^2}{\sqrt {\sinh ^{-1}(a x)}} \, dx}{\sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}+\frac {\left (12 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {\cosh ^5(x) \sinh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{a \sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}+\frac {\left (12 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \left (\frac {5 \sinh (2 x)}{32 \sqrt {x}}+\frac {\sinh (4 x)}{8 \sqrt {x}}+\frac {\sinh (6 x)}{32 \sqrt {x}}\right ) \, dx,x,\sinh ^{-1}(a x)\right )}{a \sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {\sinh (6 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {\sinh (4 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{2 a \sqrt {1+a^2 x^2}}+\frac {\left (15 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {\sinh (2 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a \sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}-\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{-6 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{6 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{4 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a \sqrt {1+a^2 x^2}}-\frac {\left (15 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {\left (15 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int \frac {e^{2 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{16 a \sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}-\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{-6 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{6 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}-\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{-4 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{2 a \sqrt {1+a^2 x^2}}+\frac {\left (3 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{4 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{2 a \sqrt {1+a^2 x^2}}-\frac {\left (15 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}+\frac {\left (15 c^2 \sqrt {c+a^2 c x^2}\right ) \text {Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}\\ &=-\frac {2 \sqrt {1+a^2 x^2} \left (c+a^2 c x^2\right )^{5/2}}{a \sqrt {\sinh ^{-1}(a x)}}-\frac {3 c^2 \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erf}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}-\frac {15 c^2 \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}-\frac {c^2 \sqrt {\frac {3 \pi }{2}} \sqrt {c+a^2 c x^2} \text {erf}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {3 c^2 \sqrt {\pi } \sqrt {c+a^2 c x^2} \text {erfi}\left (2 \sqrt {\sinh ^{-1}(a x)}\right )}{8 a \sqrt {1+a^2 x^2}}+\frac {15 c^2 \sqrt {\frac {\pi }{2}} \sqrt {c+a^2 c x^2} \text {erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}+\frac {c^2 \sqrt {\frac {3 \pi }{2}} \sqrt {c+a^2 c x^2} \text {erfi}\left (\sqrt {6} \sqrt {\sinh ^{-1}(a x)}\right )}{16 a \sqrt {1+a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.71, size = 399, normalized size = 1.02 \begin {gather*} \frac {c^2 e^{-6 \sinh ^{-1}(a x)} \sqrt {c+a^2 c x^2} \left (-1-6 e^{2 \sinh ^{-1}(a x)}+e^{4 \sinh ^{-1}(a x)}-52 e^{6 \sinh ^{-1}(a x)}+e^{8 \sinh ^{-1}(a x)}-6 e^{10 \sinh ^{-1}(a x)}-e^{12 \sinh ^{-1}(a x)}-64 a^2 e^{6 \sinh ^{-1}(a x)} x^2-16 e^{6 \sinh ^{-1}(a x)} \sqrt {2 \pi } \sqrt {\sinh ^{-1}(a x)} \text {Erf}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )+16 e^{6 \sinh ^{-1}(a x)} \sqrt {2 \pi } \sqrt {\sinh ^{-1}(a x)} \text {Erfi}\left (\sqrt {2} \sqrt {\sinh ^{-1}(a x)}\right )+\sqrt {6} e^{6 \sinh ^{-1}(a x)} \sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},-6 \sinh ^{-1}(a x)\right )+12 e^{6 \sinh ^{-1}(a x)} \sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},-4 \sinh ^{-1}(a x)\right )-\sqrt {2} e^{6 \sinh ^{-1}(a x)} \sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},-2 \sinh ^{-1}(a x)\right )-\sqrt {2} e^{6 \sinh ^{-1}(a x)} \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},2 \sinh ^{-1}(a x)\right )+12 e^{6 \sinh ^{-1}(a x)} \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},4 \sinh ^{-1}(a x)\right )+\sqrt {6} e^{6 \sinh ^{-1}(a x)} \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},6 \sinh ^{-1}(a x)\right )\right )}{32 a \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + a^2*c*x^2)^(5/2)/ArcSinh[a*x]^(3/2),x]

[Out]

(c^2*Sqrt[c + a^2*c*x^2]*(-1 - 6*E^(2*ArcSinh[a*x]) + E^(4*ArcSinh[a*x]) - 52*E^(6*ArcSinh[a*x]) + E^(8*ArcSin
h[a*x]) - 6*E^(10*ArcSinh[a*x]) - E^(12*ArcSinh[a*x]) - 64*a^2*E^(6*ArcSinh[a*x])*x^2 - 16*E^(6*ArcSinh[a*x])*
Sqrt[2*Pi]*Sqrt[ArcSinh[a*x]]*Erf[Sqrt[2]*Sqrt[ArcSinh[a*x]]] + 16*E^(6*ArcSinh[a*x])*Sqrt[2*Pi]*Sqrt[ArcSinh[
a*x]]*Erfi[Sqrt[2]*Sqrt[ArcSinh[a*x]]] + Sqrt[6]*E^(6*ArcSinh[a*x])*Sqrt[-ArcSinh[a*x]]*Gamma[1/2, -6*ArcSinh[
a*x]] + 12*E^(6*ArcSinh[a*x])*Sqrt[-ArcSinh[a*x]]*Gamma[1/2, -4*ArcSinh[a*x]] - Sqrt[2]*E^(6*ArcSinh[a*x])*Sqr
t[-ArcSinh[a*x]]*Gamma[1/2, -2*ArcSinh[a*x]] - Sqrt[2]*E^(6*ArcSinh[a*x])*Sqrt[ArcSinh[a*x]]*Gamma[1/2, 2*ArcS
inh[a*x]] + 12*E^(6*ArcSinh[a*x])*Sqrt[ArcSinh[a*x]]*Gamma[1/2, 4*ArcSinh[a*x]] + Sqrt[6]*E^(6*ArcSinh[a*x])*S
qrt[ArcSinh[a*x]]*Gamma[1/2, 6*ArcSinh[a*x]]))/(32*a*E^(6*ArcSinh[a*x])*Sqrt[1 + a^2*x^2]*Sqrt[ArcSinh[a*x]])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{\arcsinh \left (a x \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*c*x^2+c)^(5/2)/arcsinh(a*x)^(3/2),x)

[Out]

int((a^2*c*x^2+c)^(5/2)/arcsinh(a*x)^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(5/2)/arcsinh(a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 + c)^(5/2)/arcsinh(a*x)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(5/2)/arcsinh(a*x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*c*x**2+c)**(5/2)/asinh(a*x)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3004 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^(5/2)/arcsinh(a*x)^(3/2),x, algorithm="giac")

[Out]

integrate((a^2*c*x^2 + c)^(5/2)/arcsinh(a*x)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,a^2\,x^2+c\right )}^{5/2}}{{\mathrm {asinh}\left (a\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + a^2*c*x^2)^(5/2)/asinh(a*x)^(3/2),x)

[Out]

int((c + a^2*c*x^2)^(5/2)/asinh(a*x)^(3/2), x)

________________________________________________________________________________________